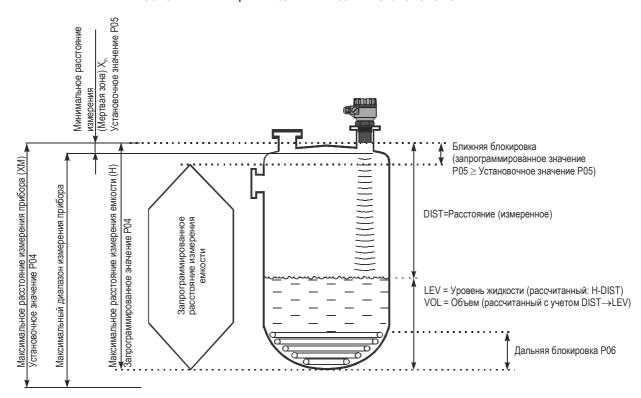


EchoTREK

4-проводные компактные ультразвуковые датчики уровня серии ST/SB-400


Инструкция по быстрой настройке прибора 2°° издание

Более подробные инструкции по программированию приборов приведены в последнем издании руководства пользователя по эксплуатации и программированию прибора

Производитель:
NIVELCO Process Control Co.
Дилер в РОССИИ
ЭНЕРГОПРОМАВТОМАТИКА

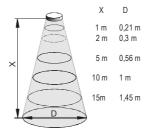
ОСНОВНЫЕ ПРИНЦИПЫ И ЭЛЕМЕНТЫ УЛЬТРАЗВУКОВОГО ИЗМЕРЕНИЯ

ОГЛАВЛЕНИЕ

1. ВВЕДЕНИЕ	4
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
2.1 КОМПЛЕКТАЦИЯ ПРИБОРА	
2.2 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ	
2.2.1 Обновление программного обеспечения	
3. YCTAHOBKA	
3.1 ИЗМЕРЕНИЕ УРОВНЯ ЖИДКОСТИ	
3.2 ИЗМЕРЕНИЕ ПОТОКА В ОТКРЫТОМ КАНАЛЕ	
3.3 УСТАНОВКА И ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ	12
4. ОСНОВНЫЕ ПРИНЦИПЫ ПРОГРАММИРОВАНИЯ	14
4.1.1 Быстрое программирование (QUICKSET)	14

Спасибо за то, что выбрали прибор "NIVELCQ". Мы уверены в том, что работа нашего прибора доставит Вам удовлетворение!

1. ВВЕДЕНИЕ


Применение

Компактные **EchoTREK** ультразвуковые датчики **VDOBHЯ** явпяются превосходным средством измерения уровня жидкости. Применяемая технология бесконтактного измерения ультразвукового позволяет устанавливать нефизический контакт с поверхностью измеряемого материала. что позволяет избежать коррозийного воздействия измеряемого продукта на компоненты прибора (кислоты), загрязнения (сточные воды) и наслоения частиц измеряемых материалов на поверхности прибора (липкие среды).

Принцип работы

Технология ультразвукового измерения уровня основывается на принципе измерения времени, необходимого ультразвуковым импульсам для прохождения расстояния между датчиком и поверхностью измеряемой жидкости и возвращения обратно к датчику. Датчик испускает ультразвуковой импульс и принимает отраженный импульс. Электронное устройство обрабатывает полученный сигнал отраженного импульса и рассчитывает расстояние между датчиком и поверхностью жидкости, исходя из времени прохождения импульса, получая основные параметры для всех исходящих сигналов ЕсhoTREK.

Полный конусный угол излучения каждого чувствительного элемента уровня Nivelco SenSonicTM 5°-7° при 3 дБ уменьшения интенсивности излучения. Это обстоятельство дает возможность измерения в таких узких емкостях, у которых поверхность стены не гладкая или имеет выступающие элементы, что является причиной появления паразитных отраженных сигналов. В результате узкого конусного излучаемого сигнала создается хорошо фокусируемый звуковой поток, который обеспечивает проходимость через газы, испарения, пену и т.д.

Диаметр в случае полного 5°-го конусного угла излучения

Мертвая зона является общей характеристикой ультразвуковых уровнемеров, которая определяет наименьшее расстояние измерения. Данный параметр указан в таблице "Технические характеристики".

Минимальное расстояние измерения (Хм): Определенное расстояние, соответствующее принципу ультразвукового измерения и внутренним техническим параметрам прибора (мертвая зона). Данное расстояние должно быть расширено при программировании во избежание возможных помех со стороны неподвижных объектов (закрытая блокировка). **Максимальное расстояние измерения (ХМ):** при создании оптимальных условий наибольшее измеряемое расстояние, которое определяется конструкцией прибора. Максимальное измеряемое расстояние (Н) не может быть больше $X_{\rm M}$.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Общие характеристики

Материал изготовления датчика	Полипропилен (PP), поливинилиденфторид (PVDF) тефлон (PTFE), нержавеющая сталь (DIN 1.4571, AISI SS316Ti)
Материал изготовления корпуса	Пластмасса: усиленная стекловолокном пластмасса PBT (DuPont®), алюминий: порошковое покрытие
Температура жидкости	Датчики из PP,PVDF, PTFE: –30 °C +90 °C Датчики из нержавеющей стали: -30° +100°C (120°C не более 2 часов)
Температура окружающей среды	Пластмассовый корпус: –25°С +70°С, алюминиевый корпус: –30 °С +70 °С, датчик с дисплеем: –25°С +70°С
Давление (абсолютное)**	0,5 3 бара (0,05 0,3 МПа), датчик из нержавеющей стали: 0,9 1,1 бара (0,09 0,11 МПа)
Уплотнения	Датчик из PP: EPDM Для всех остальных: FPM (Витон)
Класс защиты	Датчик: IP68 Корпус: IP67 (NEMA 6)
Источник питания	230 Вольт переменного тока, контакт: 85 – 255 Вольт переменного тока / 2 ВА, 24 Вольта переменного тока/постоянного тока, контакт: 24 ± 15% Вольт переменного тока/постоянного тока / 100 мА, гальваническая изоляция, защита от кратковременного перенапряжения
Точность измерения*	±0,2% от измеренного расстояния плюс 0,05% от диапазона измерения
Разрешение	Зависит от расстояния измерения: < 2 м: 1 мм, 2 5 м: 2 мм, 5 10 м: 5 мм, > 10 м: 10 мм
	Аналоговое соединение: 420 мА, (3,920,5 мА), R _{max} = (U _t – 12B) / 0.02, изоляция, защита от кратковременного перенапряжения
D	Реле SPDT, 250 Вольт переменного тока / 3A переменного тока 1
Выходы	Реле SPDT 30 Вольт постоянного тока, 1A постоянного тока
	Дисплей: 6 цифр, иконки и гистограммы (только на дисплейном модуле SAP-200 модификации ST)
	Последовательное соединение: интерфейс HART (установленное сопротивление 250 Ом)
Электрические соединения	Пластмасса M20x1,5, кабель ∅6 12 мм Кабельный сальник: 2 x ½" NPT, сечение провода: 0,5 1.5 мм²
Электрическая защита	SELV: класс защиты III Силовая линия: класс защиты I (алюминиевый корпус), класс защиты II (пластмассовый корпус)

^{*} В оптимальных условиях отражения и при стабилизированной температуре датчика.
** При давлении ниже 1 бара требуется консультация представителя компании Nivelco.

СПЕЦИАЛЬНЫЕ ХАРАКТЕРИСТИКИ 4-ПРОВОДНЫХ ПРИБОРОВ EChoTREK С ДАТЧИКАМИ PP И PVDF

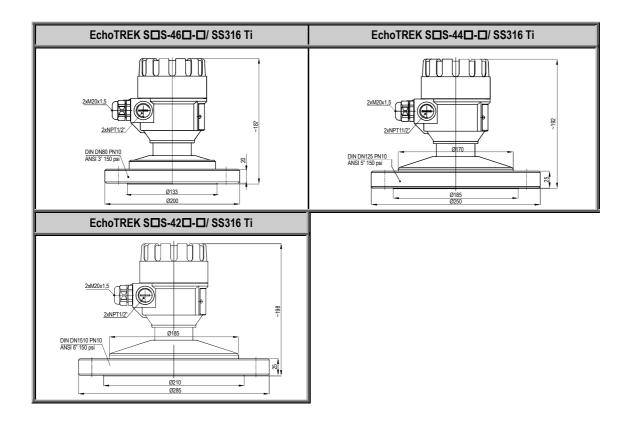
Модель	ST□-49□-□ SB□-49□-□	ST□-48□-□ SB□-48□-□	ST□-47□-□ SB□-47□-□	ST□-46□-□ SB□-46□-□	ST□-44□-□ SB□-44□-□	ST□-42□-□ SB□-42□-□
Материал изготовления датчика	PP или PVDF					
Максимальное расстояние измерения * [метры/футы]	4	6	8	10	15	25
Минимальное расстояние измерения* (мертвая зона) [метры/футы]	0,2	0,25	0,35	0,35	0,45	0,6
Общий конусный угол излучения (- 3дБ)	6°	5°	7°	5°	5°	7°
Частота измерения	80 кГц	80 кГц	50 кГц	60 кГц	40 кГц	20 кГц
Технологическое соединение	Резьба 1 ½"	Резьба 2"	Резьба 2"	Фланец DN 80	Фланец DN 125	Фланец DN 150

^{* (}от поверхности прибора)

СПЕЦИАЛЬНЫЕ ХАРАКТЕРИСТИКИ 4-ПРОВОДНЫХ ПРИБОРОВ EchoTREK С ДАТЧИКАМИ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ И PTFE

Модель	ST□-49□-□ SB□-49□-□	ST□-48□-□ SB□-48□-□	ST□-47□-□ SB□-47□-□	ST□-46□-□ SB□-46□-□	ST□-44□-□ SB□-44□-□	ST□-42□-□ SB□-42□-□
Материал изготовления датчика	PTFE	PTFE	PTFE	SS316 Ti	SS316 Ti	SS316 Ti
Максимальное расстояние измерения * [метры/футы]	3	5	6	7	12	15
Минимальное расстояние измерения* (мертвая зона) [метры/футы]	0,25	0,25	0,35	0,4	0,55	0,65
Общий конусный угол излучения (- 3дБ)	6°	5°	7°	5°	5°	7°
Частота измерения	80 кГц	80 кГц	50 кГц	60 кГц	40 кГц	40 кГц
Технологическое соединение	Резьба 1 ½"	Резьба 2"	Резьба 2"	Фланец DN 80	Фланец DN 125	Фланец DN 150

^{* (}от поверхности прибора)


Дисплейный модуль SAP-200

Индикация	СК-дисплей, 6 цифр, иконки и гистограммы	
Температура окружающей среды	-25°C +70°C	
Материал изготовления корпуса	Усиленная стекловолокном пластмасса PBT (DuPont®)	

Размеры 4-проводного прибора EchoTREK

^{*} Минимальный требуемый размер фланца

2.1 КОМПЛЕКТАЦИЯ ПРИБОРА

- Гарантийный сертификат
- Руководство по установке и программированию
- Сертификат соответствия

- Кабельная муфта 2 x M20x1,5
- Дисплейный модуль SAP-200 (опция)
- CD-ROM (программы EViewLight и DataScope) (опция)

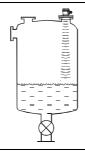
2.2 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

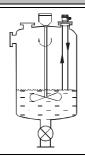
Приборы EchoTREK ST/SB не требуют регулярного технического обслуживания.

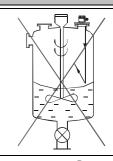
В редких случаях, может потребоваться очистка датчика от отложений. Очистка должна проводиться с максимальной осторожностью, не оставляя царапин и зазубрин на поверхности датчика.

Ремонт датчика в течение гарантийного периода и по его окончании должен проводиться исключительно компанией Nivelco. Предназначенные для ремонта приборы должны поставляться производителю в соответствующем чистом виде после проведения санитарной обработки пользователя.

2.2.1 Обновление программного обеспечения

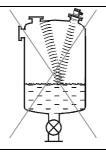

Учитывая потребности и информацию, полученную от клиентов, компания NIVELCO постоянно улучшает и пересматривает рабочее программное обеспечение прибора. Обновление программного обеспечения производится через коммуникационный порт IrDA SAP-200 или адаптер ELink (USB), подключенный к разъему SAP-200. Для получения более подробной информации об обновлении программного обеспечения свяжитесь с компанией Nivelco.

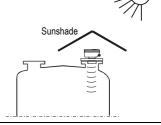

3. УСТАНОВКА


3.1 ИЗМЕРЕНИЕ УРОВНЯ ЖИДКОСТИ

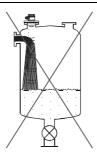
ПОЛОЖЕНИЕ

Оптимальное положение прибора EchoTREK находится в радиусе r=(0,3...0,5) R цилиндрической емкости/резервуара (также следует принять во внимание конус излучения, описанный на стр.1).




ВЫРАВНИВАНИЕ ПРИБОРА

Поверхность прибора должна быть параллельна поверхности жидкости с допустимым отклонением $\pm~2\text{-}3^\circ$.


ТЕМПЕРАТУРА

Для обеспечения защиты прибора от перегрева необходимо защитить его от попадания прямых солнечных лучей.

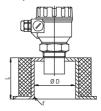
ПРЕПЯТСТВИЯ

Необходимым условием является недопущение попадания в зону конуса излучения каких-либо предметов (трубы охлаждения, элементы конструкции, термометры), также необходимо убедиться в том, что шероховатые стенки емкости не попадают в зону конуса ультразвукового луча. Программирование прибора EchoTREK позволяет устранить влияние одного неподвижного объекта на процесс измерения.

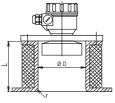
ПЕНА

Поверхностная пена препятствует ультразвуковому измерению уровня. Датчик необходимо, по возможности, расположить в таком месте, где под ним образуется минимальная пена, или применить защитную трубу.

BETEP


Необходимо избегать в районе конуса излучения интенсивных воздушных (газовых) потоков (ветер/сквозняк). Сильный поток может "сдуть" ультразвук. В подобных случаях необходимо применять датчик с пониженной частотой измерения (40 или 20 кГц).

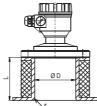
ГАЗЫ/ИСПАРЕНИЯ


В закрытых емкостях, содержащих химические вещества и прочие субстанции, особенно при установке за пределами помещений и при попадании солнечных лучей, образующиеся над поверхностью жидкости испарения и газы значительно уменьшают проницательную способность ультразвука. В подобных случаях необходимо применять датчик с пониженной частотой измерения (40 или 20 кГц).

кожух

Кожух необходимо изготовить из жесткого материала. Ребро нижней части цилиндрического элемента кожуха со стороны прибора следует закруглить.

1		D _{min}	
-	S 🗆 🗆 - 49 🗆	S 🗆 🗆 - 48 🗖	S 🗆 🗆 - 47 🗖
150	50	60	60
200	50	60	75
250	65	65	90
300	80	75	105
350	95	85	120

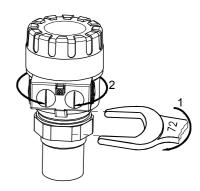


	D _m	in
-	S 🗆 🗆 - 46 🗆	S 🗆 🗆 - 44 🗆
90	80	*
200	80	*
350	85	*
500	90	*

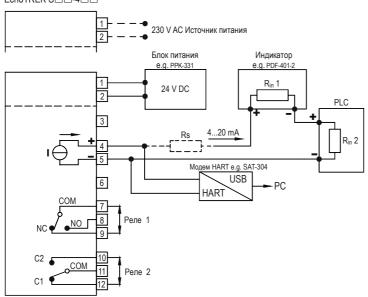
* Значения параметров можно узнать у поставщика.

Датчик прибора S \square \square - 42 \square должен находиться внутри емкости.

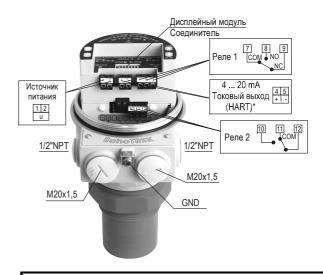
1		D _{min}	
-	S □ S – 46 □	S □ S - 44 □	S 🗆 S – 42 🗖
320	80	-	-
440	-	125	-
800	-		150


3.2 ИЗМЕРЕНИЕ ПОТОКА В ОТКРЫТОМ КАНАЛЕ

- Для увеличения точности датчика его необходимо расположить максимально близко к поверхности жидкости (смотрите параметры минимального расстояния измерения).
- В соответствии с характеристиками датчика его необходимо установить вдоль продольной оси канала или водослива. Поставляемые Nivelco каналы Parshall имеют метку, указывающую на место установки датчика.
- В некоторых случаях на поверхности потока жидкости образуется пена. Для обеспечения соответствующего отражения напротив датчика необходимо обеспечить свободную от пены поверхность потока жидкости.
- С точки зрения точности измерения крайне важно надлежащим образом подготовить участки измерительного канала, находящиеся перед датчиком и после него, также важнейшим фактором является способ соединения этих участков.
- Несмотря на тщательную установку прибора, точность измерения может быть ниже параметров, указанных для данного расстояния измерения, так как на точность будут оказывать влияние характеристики применяемого канала или водостока.


3.3 УСТАНОВКА И ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ

Установка моделей с резьбой (BSP или NPT)


- Установите прибор на его место. Для установки прибора используйте ключ, крутящий момент должен составлять не более 20Нм
- После затяжки крепления корпус должен свободно вращаться в положении установки (предохранительный болт предотвратит вращение более чем на 350°).
- Существует риск повреждения прибора электростатическим разрядом через разъем, поэтому следует принять обычные меры предосторожности, в частности, перед отсоединением крышки корпуса нужно дотронуться до прибора заземленным токопроводящим предметом.
- Убедитесь в том, что источник питания отключен.
- После отсоединения крышки корпуса и извлечения дисплейного модуля (если он установлен) появится доступ к винтовым разъемам. Рекомендуемое сечение жилы кабеля: 0,5 ... 1,5 мм². Сначала заземлите прибор внутренним или внешним винтом заземления.
- Включите и запрограммируйте прибор.
- После завершения программирования убедитесь в том, что уплотнение находится в надлежащем состоянии, и закройте крышку.

Датчик EchoTREK S□□-4□□

 $R_{\rm s}$ + $R_{\rm in1}$ + $R_{\rm in2}$ > 250 Ω при использовании модема HART

ПРЕДУПРЕЖДЕНИЕ!

* Для надлежащей работы прибора свободный токовый выход должен закрываться при максимальном полном сопротивлении 600 Ω!

4. ОСНОВНЫЕ ПРИНЦИПЫ ПРОГРАММИРОВАНИЯ

Программирование прибора EchoTrek может быть произведено 2 способами:

- **Программирование** без использования дисплейного модуля Возможна настройка параметров уровней, соответствующих токовому выходу 4 и 20 мА, индикации ошибки при помощи аналогового сигнала и демпфирования.
- Программирование с использованием дисплейного модуля SAP-200

Все необходимые параметры прибора, в частности, конфигурация измерения, оптимизация, 32-точечная линеаризация и размеры, могут быть заданы для 11 емкостей различной формы и 21 открытого канала (канал, водослив и т.п.).

Приборы модели **EchoTREK SG....** всегда укомплектованы SAP-200.

Прибор EchoTREK полностью функционален без использования SAP-200, так как SAP-200 служит исключительно для программирования и/или отображения значений измерения.

В процессе программирования прибор продолжает проводить измерения с учетом предварительно введенных параметров. Новые измененные параметры будут учитываться только после возврата в режим измерения.

Если прибор будет по ошибке оставлен в режиме программирования, он автоматически перейдет в режим измерения через 30 минут, и будет функционировать с учетом параметром последнего завершенного программирования.

Настройки прибора EchoTREK могут быть сброшены с повторной установкой следующих заводских настроек:

- Токовый выход, изображение на дисплее и гистограмма: LEVEL
- Токовый выход и гистограмма соответствуют уровню
- 4 мА и 0% соответствуют минимальному уровню
- 20 мА и 100% соответствуют максимальному уровню
- Индикация ошибки на токовом выходе: последнее измеренное значение.
- Демпфирование: 60 секунд

4.1.1 Быстрое программирование (QUICKSET)

Для запуска EchoTREK рекомендуется проведение быстрого программирования.

Быстрое программирование (QUICKSET), проводимое при помощи 6 страниц, применяется для проведения неполного измерения, при настройке 6 основных параметров.

Инструкции по быстрому программированию также приведены на передней панели выше разъема дисплейного модуля.

Кнопки	Функции
ENTER € + DOWN → (нажать и удерживать более 3 секунд)	Вход или выход из режима QUICKSET
UP ♠, DOWN ♠, NEXT ♠	Увеличение значения, уменьшение значения, перемещение мигающей цифры влево
UP ♠ + DOWN ◆	GET LEVEL – отображение текущего измеренного EchoTREK значения
ENTER ®	Сохранение значения и переход на следующую страницу
NEXT ④ + UP ④	Выход из шкалы токового выхода без сохранения изменений (CANCEL)
NEXT ④ + DOWN ④	Отображение УСТАНОВОЧНОГО значения

Страницы	Операции	
AP :xxyy	APlication (применение) xx= выбор EU (европейской) метрической системы или US (американской) системы измерений (используйте кнопки UP ♠ / DOWN ♠); yy= индикация Li для жидкостей УСТАНОВОЧНОЕ ЗНАЧЕНИЕ: EU Программирование данных параметров производится при настройке установочных параметров при помощи соответствующих инженерных пультов.	
H:xxxx	Н = хххх максимальное расстояние измерения — расстояние между поверхностью датчика и днищем емкости Ручная настройка: установите значение уровня (при помощи кнопок UP ♠ / DOWN ♠ / NEXT ♠) и сохраните значение при помо ENTER ⓒ Автоматическая настройка: используйте функцию GET LEVEL (UP ♠ + DOWN ♠) для измерения текущего значения с учетом уров жидкости в емкости или неподвижного объекта, например, стены. (Функции GET LEVEL доступны, только если горит светодиодн индикатор ECHO) и сохраните значение, как указано выше. УСТАНОВОЧНОЕ ЗНАЧЕНИЕ: максимальное расстояние измерения [м]. Смотрите таблицу технических характеристик.	
4:xxxx	4 мА хххх – значение уровня для токового выхода 4 мА Ручная настройка: установите значение уровня (при помощи кнопок UP ♠ / DOWN ♠ / NEXT ♠) и сохраните значение при помощи ENTER ♠ Автоматическая настройка: используйте функцию GET LEVEL (UP ♠ + DOWN ♠) для измерения текущего значения с учетом уровня жидкости в емкости или неподвижного объекта, например, стены. (Функции GET LEVEL доступны, только если горит светодиодный индикатор ECHO) и сохраните значение, как указано выше. УСТАНОВОЧНОЕ ЗНАЧЕНИЕ: 0 м (0%, пустая емкость).	

Страницы	Операции
20 :xxxx	20 mA хххх – значение уровня для токового вывода 20 мА. Ручная настройка: установите значение уровня (при помощи кнопок UP ♠ / DOWN ♠ / NEXT ♠) и сохраните значение при помощи ENTER ⓒ Автоматическая настройка: используйте функцию GET LEVEL (UP ♠ + DOWN ♠) для измерения текущего значения с учетом уровня жидкости в емкости или неподвижного объекта, например, стены. (Функции GET LEVEL доступны, только если горит светодиодный индикатор ECHO) и сохраните значение, как указано выше. УСТАНОВОЧНОЕ ЗНАЧЕНИЕ: максимальный уровень = максимальному расстоянию измерения – мертвая зона [м] (100%, полная емкость). Смотрите таблицу технических характеристик.
Er:xxxx	Error indication (индикация ошибки) при помощи токового выхода — выберите Hold, 3,8 мА или 22 мА (при помощи кнопок UP ♠ / DOWN ❤ key) и сохраните, как указано выше. УСТАНОВОЧНОЕ ЗНАЧЕНИЕ: сохраняется последнее значение.
dt: xxxx	damping time (время демпфирования): выберите требуемое значение времени демпфирования (при помощи кнопок UP ♠ / DOWN ♠ key) и сохраните, как указано выше. УСТАНОВОЧНОЕ ЗНАЧЕНИЕ: 60 секунд для жидкостей и 300 секунд для твердых веществ.

Примечание:

- Токовый выход также может быть запрограммирован для проведения обратной операции: 4 мА= 100% (полная емкость), 20 мА= 0% (пустая емкость) Описание ошибок приведено в разделе 7 "Коды ошибок".

sba4802o0600q_02.doc Май, 2013

Компания NIVELCO оставляет за собой право на внесение изменений в технические спецификации без предварительного уведомления.